Example 1 Test -2 Seed 4 accuracy 2^24 Test 3 Special Normal Distribution Test sum 3,921875 power nx 8,31616882559868 length n 2500 i-11 00000000000 Norm Dist 0,311254980079681 n = 0 power-1,68383117440132 i-10 0000000000 Norm Dist 0,622509960159362 n = 1 power-0,683831174401323 i-9 000000000 Norm Dist 1,24501992031872 n = 2 power 0,316168825598677 i-8 00000000 Norm Dist 2,49003984063745 n = 6 power 1,31616882559868 i-7 0000000 Norm Dist 4,9800796812749 n = 6 power 2,31616882559868 i-6 000000 Norm Dist 9,9601593625498 n = 12 power 3,31616882559868 i-5 00000 Norm Dist 19,9203187250996 n = 12 power 4,31616882559868 i-4 0000 Norm Dist 39,8406374501992 n = 46 power 5,31616882559868 i-3 000 Norm Dist 79,6812749003984 n = 81 power 6,31616882559868 i-2 00 Norm Dist 159,362549800797 n = 136 power 7,31616882559868 i-1 0 Norm Dist 318,725099601593 n = 320 power 8,31616882559868 i 1 1 Norm Dist 318,725099601593 n = 333 power 8,31616882559868 i 2 11 Norm Dist 159,362549800797 n = 139 power 7,31616882559868 i 3 111 Norm Dist 79,6812749003984 n = 70 power 6,31616882559868 i 4 1111 Norm Dist 39,8406374501992 n = 33 power 5,31616882559868 i 5 11111 Norm Dist 19,9203187250996 n = 25 power 4,31616882559868 i 6 111111 Norm Dist 9,9601593625498 n = 11 power 3,31616882559868 i 7 1111111 Norm Dist 4,9800796812749 n = 5 power 2,31616882559868 i 8 11111111 Norm Dist 2,49003984063745 n = 2 power 1,31616882559868 i 9 111111111 Norm Dist 1,24501992031872 n = 1 power 0,316168825598677 i 10 1111111111 Norm Dist 0,622509960159362 n = 1 power-0,683831174401323 i 11 11111111111 Norm Dist 0,311254980079681 n = 0 power-1,68383117440132 i 15 111111111111111 Norm Dist 1,94534362549801E-02 n = 1 power-5,68383117440132 Kappa2 = 71,7752005976096 igamc = p = 2,15268758374521E-09 Non Random Example 2 Test -3 Seed 4 accuracy 2^14 Test 3 Special Normal Distribution Test sum 3,921875 power nx 8,31616882559868 length n 2500 i-11 00000000000 Norm Dist 0,311254980079681 n = 0 power-1,68383117440132 i-10 0000000000 Norm Dist 0,622509960159362 n = 1 power-0,683831174401323 i-9 000000000 Norm Dist 1,24501992031872 n = 1 power 0,316168825598677 i-8 00000000 Norm Dist 2,49003984063745 n = 2 power 1,31616882559868 i-7 0000000 Norm Dist 4,9800796812749 n = 3 power 2,31616882559868 i-6 000000 Norm Dist 9,9601593625498 n = 6 power 3,31616882559868 i-5 00000 Norm Dist 19,9203187250996 n = 20 power 4,31616882559868 i-4 0000 Norm Dist 39,8406374501992 n = 40 power 5,31616882559868 i-3 000 Norm Dist 79,6812749003984 n = 73 power 6,31616882559868 i-2 00 Norm Dist 159,362549800797 n = 157 power 7,31616882559868 i-1 0 Norm Dist 318,725099601593 n = 333 power 8,31616882559868 i 1 1 Norm Dist 318,725099601593 n = 323 power 8,31616882559868 i 2 11 Norm Dist 159,362549800797 n = 153 power 7,31616882559868 i 3 111 Norm Dist 79,6812749003984 n = 69 power 6,31616882559868 i 4 1111 Norm Dist 39,8406374501992 n = 44 power 5,31616882559868 i 5 11111 Norm Dist 19,9203187250996 n = 24 power 4,31616882559868 i 6 111111 Norm Dist 9,9601593625498 n = 15 power 3,31616882559868 i 7 1111111 Norm Dist 4,9800796812749 n = 4 power 2,31616882559868 i 8 11111111 Norm Dist 2,49003984063745 n = 4 power 1,31616882559868 i 9 111111111 Norm Dist 1,24501992031872 n = 0 power 0,316168825598677 i 10 1111111111 Norm Dist 0,622509960159362 n = 0 power-0,683831174401323 i 11 11111111111 Norm Dist 0,311254980079681 n = 0 power-1,68383117440132 Kappa2 = 13,6967630976096 igamc = p = 0,548640511658558 Random Example 3 Test -4 Seed 4 accuracy 2^12 Test 3 Special Normal Distribution Test sum 3,921875 power nx 8,31616882559868 length n 2500 i-14 00000000000000 Norm Dist 3,89068725099601E-02 n = 1 power-4,68383117440132 i-11 00000000000 Norm Dist 0,311254980079681 n = 0 power-1,68383117440132 i-10 0000000000 Norm Dist 0,622509960159362 n = 0 power-0,683831174401323 i-9 000000000 Norm Dist 1,24501992031872 n = 3 power 0,316168825598677 i-8 00000000 Norm Dist 2,49003984063745 n = 1 power 1,31616882559868 i-7 0000000 Norm Dist 4,9800796812749 n = 4 power 2,31616882559868 i-6 000000 Norm Dist 9,9601593625498 n = 11 power 3,31616882559868 i-5 00000 Norm Dist 19,9203187250996 n = 14 power 4,31616882559868 i-4 0000 Norm Dist 39,8406374501992 n = 47 power 5,31616882559868 i-3 000 Norm Dist 79,6812749003984 n = 97 power 6,31616882559868 i-2 00 Norm Dist 159,362549800797 n = 149 power 7,31616882559868 i-1 0 Norm Dist 318,725099601593 n = 299 power 8,31616882559868 i 1 1 Norm Dist 318,725099601593 n = 330 power 8,31616882559868 i 2 11 Norm Dist 159,362549800797 n = 141 power 7,31616882559868 i 3 111 Norm Dist 79,6812749003984 n = 81 power 6,31616882559868 i 4 1111 Norm Dist 39,8406374501992 n = 35 power 5,31616882559868 i 5 11111 Norm Dist 19,9203187250996 n = 22 power 4,31616882559868 i 6 111111 Norm Dist 9,9601593625498 n = 8 power 3,31616882559868 i 7 1111111 Norm Dist 4,9800796812749 n = 6 power 2,31616882559868 i 8 11111111 Norm Dist 2,49003984063745 n = 2 power 1,31616882559868 i 9 111111111 Norm Dist 1,24501992031872 n = 0 power 0,316168825598677 i 10 1111111111 Norm Dist 0,622509960159362 n = 0 power-0,683831174401323 i 11 11111111111 Norm Dist 0,311254980079681 n = 0 power-1,68383117440132 Kappa2 = 43,7836755976096 igamc = p = 1,1887355927831E-04 Non Random Example 4 Test -4 Seed 4 accuracy 2^10 Test 3 Special Normal Distribution Test sum 3,921875 power nx 8,31616882559868 length n 2500 i-11 00000000000 Norm Dist 0,311254980079681 n = 0 power-1,68383117440132 i-10 0000000000 Norm Dist 0,622509960159362 n = 0 power-0,683831174401323 i-9 000000000 Norm Dist 1,24501992031872 n = 0 power 0,316168825598677 i-8 00000000 Norm Dist 2,49003984063745 n = 4 power 1,31616882559868 i-7 0000000 Norm Dist 4,9800796812749 n = 9 power 2,31616882559868 i-6 000000 Norm Dist 9,9601593625498 n = 11 power 3,31616882559868 i-5 00000 Norm Dist 19,9203187250996 n = 19 power 4,31616882559868 i-4 0000 Norm Dist 39,8406374501992 n = 41 power 5,31616882559868 i-3 000 Norm Dist 79,6812749003984 n = 86 power 6,31616882559868 i-2 00 Norm Dist 159,362549800797 n = 155 power 7,31616882559868 i-1 0 Norm Dist 318,725099601593 n = 252 power 8,31616882559868 i 1 1 Norm Dist 318,725099601593 n = 240 power 8,31616882559868 i 2 11 Norm Dist 159,362549800797 n = 160 power 7,31616882559868 i 3 111 Norm Dist 79,6812749003984 n = 91 power 6,31616882559868 i 4 1111 Norm Dist 39,8406374501992 n = 43 power 5,31616882559868 i 5 11111 Norm Dist 19,9203187250996 n = 19 power 4,31616882559868 i 6 111111 Norm Dist 9,9601593625498 n = 7 power 3,31616882559868 i 7 1111111 Norm Dist 4,9800796812749 n = 10 power 2,31616882559868 i 8 11111111 Norm Dist 2,49003984063745 n = 6 power 1,31616882559868 i 9 111111111 Norm Dist 1,24501992031872 n = 0 power 0,316168825598677 i 10 1111111111 Norm Dist 0,622509960159362 n = 0 power-0,683831174401323 i 11 11111111111 Norm Dist 0,311254980079681 n = 0 power-1,68383117440132 Kappa2 = 56,0924630976094 igamc = p = 1,16895857871224E-06 Non Random Example 5 Test -4 Seed 4 accuracy 2^8 Test 3 Special Normal Distribution Test sum 3,921875 power nx 8,31616882559868 length n 2500 i-11 00000000000 Norm Dist 0,311254980079681 n = 0 power-1,68383117440132 i-10 0000000000 Norm Dist 0,622509960159362 n = 0 power-0,683831174401323 i-9 000000000 Norm Dist 1,24501992031872 n = 0 power 0,316168825598677 i-8 00000000 Norm Dist 2,49003984063745 n = 0 power 1,31616882559868 i-7 0000000 Norm Dist 4,9800796812749 n = 0 power 2,31616882559868 i-6 000000 Norm Dist 9,9601593625498 n = 10 power 3,31616882559868 i-5 00000 Norm Dist 19,9203187250996 n = 20 power 4,31616882559868 i-4 0000 Norm Dist 39,8406374501992 n = 50 power 5,31616882559868 i-3 000 Norm Dist 79,6812749003984 n = 76 power 6,31616882559868 i-2 00 Norm Dist 159,362549800797 n = 195 power 7,31616882559868 i-1 0 Norm Dist 318,725099601593 n = 284 power 8,31616882559868 i 1 1 Norm Dist 318,725099601593 n = 304 power 8,31616882559868 i 2 11 Norm Dist 159,362549800797 n = 175 power 7,31616882559868 i 3 111 Norm Dist 79,6812749003984 n = 79 power 6,31616882559868 i 4 1111 Norm Dist 39,8406374501992 n = 48 power 5,31616882559868 i 5 11111 Norm Dist 19,9203187250996 n = 19 power 4,31616882559868 i 6 111111 Norm Dist 9,9601593625498 n = 10 power 3,31616882559868 i 7 1111111 Norm Dist 4,9800796812749 n = 0 power 2,31616882559868 i 8 11111111 Norm Dist 2,49003984063745 n = 0 power 1,31616882559868 i 9 111111111 Norm Dist 1,24501992031872 n = 0 power 0,316168825598677 i 10 1111111111 Norm Dist 0,622509960159362 n = 0 power-0,683831174401323 i 11 11111111111 Norm Dist 0,311254980079681 n = 0 power-1,68383117440132 Kappa2 = 38,3101380976096 igamc = p = 8,11782132752681E-04 Non Random Example 6 Test -4 Seed 4 accuracy 2^6 Test 3 Special Normal Distribution Test sum 3,921875 power nx 8,31616882559868 length n 2500 i-11 00000000000 Norm Dist 0,311254980079681 n = 0 power-1,68383117440132 i-10 0000000000 Norm Dist 0,622509960159362 n = 0 power-0,683831174401323 i-9 000000000 Norm Dist 1,24501992031872 n = 0 power 0,316168825598677 i-8 00000000 Norm Dist 2,49003984063745 n = 0 power 1,31616882559868 i-7 0000000 Norm Dist 4,9800796812749 n = 0 power 2,31616882559868 i-6 000000 Norm Dist 9,9601593625498 n = 0 power 3,31616882559868 i-5 00000 Norm Dist 19,9203187250996 n = 39 power 4,31616882559868 i-4 0000 Norm Dist 39,8406374501992 n = 39 power 5,31616882559868 i-3 000 Norm Dist 79,6812749003984 n = 39 power 6,31616882559868 i-2 00 Norm Dist 159,362549800797 n = 156 power 7,31616882559868 i-1 0 Norm Dist 318,725099601593 n = 509 power 8,31616882559868 i 1 1 Norm Dist 318,725099601593 n = 509 power 8,31616882559868 i 2 11 Norm Dist 159,362549800797 n = 156 power 7,31616882559868 i 3 111 Norm Dist 79,6812749003984 n = 78 power 6,31616882559868 i 4 1111 Norm Dist 39,8406374501992 n = 39 power 5,31616882559868 i 5 11111 Norm Dist 19,9203187250996 n = 0 power 4,31616882559868 i 6 111111 Norm Dist 9,9601593625498 n = 0 power 3,31616882559868 i 7 1111111 Norm Dist 4,9800796812749 n = 0 power 2,31616882559868 i 8 11111111 Norm Dist 2,49003984063745 n = 0 power 1,31616882559868 i 9 111111111 Norm Dist 1,24501992031872 n = 0 power 0,316168825598677 i 10 1111111111 Norm Dist 0,622509960159362 n = 0 power-0,683831174401323 i 11 11111111111 Norm Dist 0,311254980079681 n = 0 power-1,68383117440132 Kappa2 = 326,14326309761 igamc = p = 0 Non Random
The Seed 4 is specially selected because the result of test 3 (example 1 accuracy 2^24) is negatif. The following Seeds give the same result: 4,5,7,15,16,18,20,21,22,25,26 and 29. In total 12. This type of behavior is normal for strings generated by physical systems i.e. the tests -1 and -2.
Back to the start page: Index of this Document
Back to ON OFF page: Bench Mark evaluation