Program "Performance" Benchmark Pentium P4 2.8 and Intel i5 M 460
Visual Basic, Visual Studio 2010 and Excel

The purpose of this document is to evaluate a package of subroutines written in different programming languages necessary to factorize large numbers in two prime numbers
The subroutine package consists of two types of logic: Integer (Array) and (Double Precision) Array
For Integer Array logic the following subroutines are tested:
Mul_Int_Array, Div_int_Array, Sqr_Int_array, GETPRIEM_Int_array and FERMAT_Int_array
For Double Precision Array logic the following subroutines are tested:
Mul_Array, Div_Array, Sqr_array, GETPRIEM_array and FERMAT_array
The three different programming languages are: Excel, Visual Basic 5.0 and Visual Studio 2010.
The two CPU's evaluated are (1) a Pentium P4 and (2) a Intel Core i5 M 460 @ 2.53 Ghz.

The mathematical package is used to factorize large numbers. See: findprim benchmark
To evaluate factorization using Parallel processing select the following link:
Quantum Factoring Performance Evaluation - Using Parallel Processing - VB2010

General Performance Evaluation - Program "Performance"

The three programs evaluated are: Performance.xls, VB2010_Performance and VB_Performance.

Excel Basic Benchmark

"Blad1" contains 5 Operation Commands: "Blad1" also contains the selection command "Integer" or the command "Array".
Pentium P4
Mul 100000 0.04766 0.02594
Div 20000.50000.28906
SQRoot 2002.265 1.406
Mod 2 Exp 5026.25 16.562
Get Prime10 376.562 229.687
Fermat 14671.8752859.375
Intel Core i5 M 460 @ 2.53 GHZ
Mul 100000 0.06929 0.06152
Div 2000 0.7050.560
SQRoot 200 3.046 2.304
Mod 2 Exp 50 x x
Get Prime 10 535,156 376,953
Fermat 1 6492,1875 4621,093
Table 1: Performance.xls

What Table 1 shows is that:

Visual Basic 5.0 Benchmark

Operation of the Control Form is almost identical as the Excel Benchmark
Pentium P4
Mul100000 0.01093 0.00625
Div 1000 0.21875 0.13281
SQRoot 100 0.703125 0.625
Mod 2 Exp50 8.4375 6.5625
Get Prime 20 212.5 96.875
Fermat 11765.625 1062.5
Intel Core i5 M 460 @ 2.53 GHZ
Mul100000 0,02265 0,01093
Div 1000 0.36328 0.19921
SQRoot 100 1.953125 1.015625
Mod 2 Exp50 21.5625 10.78125
Get Prime 10 322.6563 153.125
Fermat 14140.6251734.375
Table 2: VB 5.0 Performance

In the above benchmark for the Commands Multiply, Divide and Square Root the numbers n1 = n2 = 12345678901234567890 and n3 = 152415787532388367501905199875019052100 are used
For the Commands Mod Ex, "Get Prime" and Fermat the prime numbers n5 = 3347831 and n6 = 3674609 are used

When you compare the results of Table 1, Table 2 and Table 3:

Visual Studio VB2010 Benchmark

The display shows the following functions:
Mul n1=12345678901234567890. n2= n1=12345678901234567890.
n3=n1*n2 = 152415787532388367501905199875019052100
Div n3= 152415787532388367501905199875019052100 n2 =12345678901234567890.
n4=n3/n2= 12345678901234567890. n5 = remainder = 0
SQRoot n3= 152415787532388367501905199875019052100
n4=Sqr(n3) = 12345678901234567890. n5 = remainder = 0
Mod Ex n6=3347831 n7= 3674609 n3=n6*n7 =12301969923079 n4=n6=3347831
n5= 2^n4 mod n3 = 3674609
Operation of the Control Form is almost identical as the Excel Benchmark
Pentium P4
Array Integer
Mul100000 0.02265 0.01078
Div 10006.734370.53125
SQRoot 10022.8121.406
Mod 2 Exp 50144.68716.875
Get Prime 1 2248.437 335.937
Fermat 125109.372031.250
Intel Core i5 M 460 @ 2.53 GHZ
Array Integer 7 Integer 9
Mul100000 0.03343 0.00530 0.00520
Div 1000 8.06653 0.5850 0.5600
SQRoot 100 27.170 1.400 2.000
Mod 2 Exp50 172.201 18.700 18.000
Get Prime10 2667.903 363.400 353.600
Fermat 1 29188.092006.003 1985.003
Table 3: VB2010 Performance

What Table 3 shows is that:

Subroutine Div_Int_Array

rem = A(In)   
Div=A(Div)
A(Quotient) = zero
Do
	tempin = rem/Div
	A(temp) = tempin
	A(Quotient) = A(Quotient)+A(temp)
	A(in2) = A(Quotient) * A(Div)
	A(rem) = A(in) - A(in2)
	rem = A(rem)
Loop until tempin < 1
The program uses the following arrays: A(in),A(Div),A(Quotient),A(rem),A(temp) and A(in2)
The numbers: rem,Div and tempin are double precision floating point numbers.


Feedback

None


Created: 21 September 2015

Back to my home page Contents of This Document