


Picture 2A shows one result of the standard simulation with the parameters of Picture 1A.
Object m3 comes in from the left below the escape velocity in black. When m3 approaches the center of the binary pair its speed increases above the escape velocity. This is indicated by the red color. At that moment m1 in red is at roughly 12 o'clock. Because m3 is closer to m1 than towards m2 its path will be bended towards roughly 11 o'clock The speed of m3 decreases, goes below the escape velocity and the color changes back to black. Because the speed goes below the escape velocity it will again be atracted towards the binary pair. The whole process repeats itself but now roughly at 5 o'clock. And again but now roughly at 1 o'clock. The simulation stops because of distance limitation and after 3 revolutions of the binary pair. Picture 1A shows the initial and final results of the control form 

Picture 2B shows one result of the standard simulation with the parameters of Picture 1B.
Object m3 comes in from the left in black. Is reflected first by m2 in green and moves towards 6 o'clock and than moves back towards the center towards m1 in red. This whole interplay between the three objects continues for at least 10 revolutions and maybe forever. The interesting part of this simulation is that the speed of m3 always stays below the escape velocity. Picture 1B shows the initial and final results of the control form 

Picture 2C shows:
Object m3 comes in from the left in black. Is first atracked towards m1 in red. The path makes always a complete circle around m1 and is then atracked towards m2 in green. Its speed increases above the escape velocity and m3 (now in read) leaves the binary pair. What is interesting about this simulation is that its brings the two binary stars in close approximation. 


3 Objects m0, m1 and m2 Demonstration Delta time 0,001 init v3 0,9 # stars 3 alpha 0 m1 1000 m2 1000 m3 1 Alpha 0 v3 2.987 vesc 1.242 r3 2589 dist12 198.2 199.8 201.1 time 1190 end 2 Alpha 10 v3 1.356 vesc 1.559 r3 1651 dist12 198.5 200.0 201.3 time 1192 end 3 Alpha 20 v3 0.973 vesc 1.669 r3 1440 dist12 198.6 200.1 201.4 time 1193 end 3 Alpha 30 v3 0.473 vesc 1.889 r3 1127 dist12 198.8 200.1 201.3 time 1193 end 3 Alpha 40 v3 3.598 vesc 1.524 r3 1726 dist12 198.2 199.9 200.8 time 1191 end 2 Alpha 50 v3 1.432 vesc 1.328 r3 2262 dist12 199.4 199.9 200.4 time 1191 end 2 Alpha 60 v3 23.811 vesc 24.880 r3 96 dist12 199.9 199.9 200.0 time 113 end 1 Alpha 70 v3 24.702 vesc 21.633 r3 103 dist12 199.9 200.0 200.0 time 110 end 1 Alpha 80 v3 3.706 vesc 0.958 r3 4355 dist12 198.7 199.4 200.1 time 1187 end 2 Alpha 90 v3 3.261 vesc 1.011 r3 3913 dist12 198.9 199.5 200.2 time 1188 end 2 Alpha 100 v3 2.734 vesc 1.084 r3 3406 dist12 199.1 199.6 200.3 time 1189 end 2 Alpha 110 v3 2.093 vesc 1.036 r3 3727 dist12 199.2 199.8 200.3 time 1587 end 2 Alpha 120 v3 1.522 vesc 1.312 r3 2324 dist12 199.4 199.9 200.4 time 1191 end 2 Alpha 130 v3 0.689 vesc 1.545 r3 1680 dist12 199.5 199.9 200.5 time 1192 end 3 Alpha 140 v3 24.867 vesc 24.780 r3 103 dist12 199.5 200.0 200.6 time 1537 end 1 Alpha 150 v3 0.652 vesc 1.825 r3 1201 dist12 199.0 200.1 201.1 time 1590 end 3 Alpha 160 v3 0.755 vesc 1.904 r3 1098 dist12 199.3 200.1 200.8 time 1988 end 3 Alpha 170 v3 3.546 vesc 1.211 r3 2729 dist12 198.4 199.7 200.9 time 1189 end 2 Alpha 180 v3 2.987 vesc 1.242 r3 2589 dist12 198.2 199.8 201.1 time 1190 end 2 NEXT TEST ? 
3 Objects m0, m1 and m2 Demonstration Delta time 0,001 init v3 0,9 # stars 3 alpha 0 m1 1000 m2 500 m3 50 Alpha 0 v3 0.912 vesc 1.266 r3 1881 dist12 166.7 197.3 229.0 time 1318 end 3 Alpha 20 v3 1.503 vesc 1.127 r3 2353 dist12 163.4 190.6 217.7 time 1254 end 2 Alpha 40 v3 2.176 vesc 1.028 r3 2819 dist12 152.6 182.0 208.5 time 1165 end 2 Alpha 60 v3 24.296 vesc 20.827 r3 103 dist12 199.5 199.8 201.9 time 133 end 1 Alpha 80 v3 1.797 vesc 1.068 r3 2602 dist12 160.8 188.0 214.0 time 1231 end 2 Alpha 100 v3 0.850 vesc 1.250 r3 1892 dist12 173.2 197.9 223.3 time 1336 end 3 Alpha 120 v3 3.712 vesc 2.773 r3 371 dist12 182.2 209.3 239.3 time 1465 end 3 Alpha 140 v3 0.197 vesc 1.499 r3 1304 dist12 146.9 213.1 263.6 time 1917 end 3 Alpha 160 v3 1.458 vesc 1.211 r3 2082 dist12 98.5 220.8 290.7 time 1430 end 2 Alpha 180 v3 1.602 vesc 1.146 r3 2296 dist12 92.3 219.6 288.9 time 1409 end 2 Alpha 200 v3 1.680 vesc 1.120 r3 2387 dist12 92.6 217.4 285.1 time 1387 end 2 Alpha 220 v3 15.854 vesc 14.850 r3 112 dist12 190.9 201.0 228.3 time 256 end 1 Alpha 240 v3 2.158 vesc 4.218 r3 255 dist12 163.4 243.7 314.0 time 6284 end 4 Alpha 260 v3 17.229 vesc 16.025 r3 104 dist12 199.8 200.0 202.9 time 119 end 1 Alpha 280 v3 2.980 vesc 0.985 r3 3116 dist12 121.4 174.8 217.1 time 1052 end 2 Alpha 300 v3 2.268 vesc 1.045 r3 2765 dist12 141.3 183.8 221.5 time 1163 end 2 Alpha 320 v3 1.661 vesc 1.126 r3 2386 dist12 153.6 190.7 226.3 time 1243 end 2 Alpha 340 v3 1.085 vesc 1.235 r3 1985 dist12 162.2 196.3 230.7 time 1304 end 3 Alpha 360 v3 0.912 vesc 1.266 r3 1881 dist12 166.7 197.3 229.0 time 1318 end 3 NEXT TEST ? 
The case with alpha 240 is interesting because m3 is captured and the binary system changes into a threesome. This is a stable configuration. For more detail see Picture 2B